

SIDDARTHA INSTITUTE OF SCIENCE AND TECHNOLOGY:: PUTTUR (AUTONOMOUS)

Siddharth Nagar, Narayanavanam Road – 517583

OUESTION BANK (DESCRIPTIVE)

Subject with Code: Finite Element Method (18CE0137)

Course & Branch: B.Tech - CE

Regulation: R18 Year & Sem: IV-B.Tech & I-Sem

UNIT –I INTRODUCTION & PRINCIPLES OF ELASTICITY

1	a Define Finite element method in Engineering.	[L1][CO1]	[02M]
	b List out various applications in FEM.	[L1][CO1]	[02M]
	c Define discretization process in FEM.	[L1][CO1]	[02M]
	d List out various types of elements in FEM.	[L1][CO1]	[02M]
	e Write short notes on elasticity and elastic parameters.	[L1][CO1]	[02M]
2	Explain the concept of FEM briefly and outline the steps involved in FEM	[L1][CO1]	[10M]
3	What are the advantages, disadvantages and applications of FEM	[L1][CO1]	[10M]
4	Explain the concept of strain energy and principle of minimum potential energy.	[L2][CO1]	[10M]
5	Explain the concept of Rayleigh-Ritz method of functional approximation.	[L2][CO1]	[10M]
6	Derive the equation of equilibrium in case of three dimensional stress system.	[L2][CO1]	[10M]
7	Derive strain -displacement relationship in matrix form.	[L2][CO1]	[10M]
8	Explain the plane stress condition and write the constitutive relations for the plane stress condition.	[L2][CO1]	[10M]
9	Explain the plane strain condition and write the constitutive relations for the plane strain condition.	[L2][CO1]	[10M]
10	Define Axi-Symmetric Bodies of Revolution with Axi-Symmetric Loading and give expression for strain displacement relation for axi-symmetric bodies.	[L2][CO1]	[10M]

UNIT –II ONE DIMENSIONAL & TWO DIMENSIONAL ELEMENTS

1	a Write the expression for element stiffness matrix of a beam.	[L1][CO2]	[02M]
	b Give the expression for shape functions of a linear element.	[L1][CO2]	[02M]
	c Define plane stress problems with example.	[L1][CO2]	[02M]
	d Define geometric invariance.	[L1][CO2]	[02M]
	e Define plane strain problems with example.	[L1][CO2]	[02M]
2	Explain different types of elements in FEM with neat sketch.	[L2][CO2]	[10M]
3	Define one-Dimensional element and list out various forces act on a element when load is applied with neat sketch.	[L1][CO2]	[10M]
4	Determine the shape functions N_1, N_2, N_3 at interior point 'p' for triangular element with local coordinates $P(3,1.5)$ and global coordinates $(1,3),(3,4)$ and $(4,6)$.	[L2][CO2]	[10M]
5	Define shape function and write expression for one dimensional bar element	[L2][CO2]	[10M]
6	Explain the Displacement models and generalized coordinates in FEM	[L2][CO2]	[10M]
7	Explain various types of coordinate systems in FEM.	[L2][CO2]	[10M]
8	Define 2-D elements and explain the I s o Parametric element ,sub -parametric element and superparametric elements in FEM.	[L1][CO2]	[10M]
9	Determine the shape functions N_1, N_2, N_3 at interior point 'p' for triangular element with local coordinates $P(2,1)$ and global coordinates $P(2,3)$, and $P(2,3)$, and $P(3,3)$ and $P(3,3)$.	[L2][CO2]	[10M]
10	Explain area coordinate system and volume coordinate system in finite element analysis.	[L2][CO2]	[10M]

UNIT -III

SHAPE FUNCTIONS

1	a	Define shape function.	[L1][CO3]	[02M]
	b	Write expression for element stiffness matrix for 2 noded 1-D bar element.	[L1][CO3]	[02M]
	c	Write expression for strain displacement matrix for 3 noded 1-D bar element.	[L1][CO3]	[02M]
	d	Define Lagrangian element.	[L1][CO3]	[02M]
	e	Define serendipity element.	[L1][CO3]	[02M]
2	Ex	plain about Convergence & Compatibility requirements in FEM.	[L2][CO3]	[10M]
3	De	erive the shape functions for 1-D two noded bar element	[L2][CO3]	[10M]
4	De	erive the shape functions for 1-D three noded bar element.	[L2][CO3]	[10M]
5	Di	fferentiate between CST and LST elements.	[L2][CO3]	[10M]
6		efine shape function. W rite the properties of shape function and explain with ample.	[L2][CO3]	[10M]
7		erive the value of displacement at point p which is shown in fig.Calculate shape actions N_1 , N_2 & ϵ .For above fig. Displacement q_1 =0.003 inch and q_2 =0.05inch	[L2][CO3]	[10M]
		P $X_{1}=20$ $X=24$ $X_{2}=36$		
8	Der	ive shape function using polynomials by direct method.	[L2][CO3]	[10M]
9	Der	ive shape function using polynomials by matrix method.	[L2][CO3]	[10M]
10	De	etermine the shape functions N ₁ ,N ₂ ,N ₃ at interior point 'p' for triangular	[L2][CO3]	[10M]
	ele	ement. The co-ordinate are P(3.5,5), (2,3),(7,4) and (4,7).		

UNIT –IV BAR AND TRUSSES & PLANE STRESS AND PLANE STRAIN ANALYSIS

1	a	Write short notes on generation of stiffness matrix.	[L1][CO4]	[02M]
	b	Define bar and truss.	[L1][CO4]	[02M]
	c	Write expression for stress-strain relationship matrix for plane stress problems.	[L1][CO4]	[02M]
	d	Write expression for stress-strain relationship matrix for plane strain problems.	[L1][CO4]	[02M]
	e	Write short notes on CST elements.	[L1][CO4]	[02M]
2	De	rive the stiffness matrix for stepped bar element.	[L2][CO4]	[10M]
3		r two bar truss as shown in figure .Determine the displacement at node 2 and esses in both elements. E=70Gpa,A=200mm ² 500MM 12KN 300mm 300mm	[L2][CO4]	[10M]
4	De	rive the shape function for the 3-noded CST element.	[L2][CO4]	[10M]
5		rive the strain displacement matrix for the 3-noded CST element.	[L2][CO4]	[10M]
6	De	rive the expression for element stiffness matrix for two dimensional elements.	[L2][CO4]	[10M]
7	CS ,v ₂	lculate element stresses σ_x , σ_y , T_{xy} , σ_1 , σ_2 , and principle angle θp for the δT element . The nodal displacement are u_1 =2.0 μm , v_1 =1.0 μm , u_2 =0.5 μm =1.5 μm , u_3 =1.2 μm , v_3 =2.8 μm . co-ordinates are (10,8) (15,5) , and (18,12). ke E=210 Gpa and poisson's ratio as 0.25. assume plane stress condition.	[L3][CO4]	[10M]
8	ele As	aluate strain displacement matrix and stress -strain matrix for the Tri-angular ment under plane stress condition .The co-ordinate are (0,0) (6,0) and (3,5). sume u=0.25, t=1mm, E=200 Gpa.	[L2][CO4]	[10M]
9	co	termine the shape function for the rectangular element which has local ordinates ε =0.4 and η =0.2. The Global co-ordinates are (2,2) (3,4) (8,6) d(4,5). All dimensions are in mm.	[L2][CO4]	[10M]
10		r a given triangular element with nodes of coordinates A(2,3) B(5,2) C(3,4).the erior point in a triangle is P(4,5)Calculate shape functions $N_1,N_2,\&N_3$	[L2][CO4]	[10M]

UNIT –V ISOPARAMETRIC FORMULATION & AXI-SYMMETRIC ANALYSIS

1	a Define iso-parametric elements.	[L2][CO5]	[02M]
	b Write short notes on lagrangian elements with suitable examples.	[L2][CO5]	[02M]
	c Write short notes on serendipity elements with suitable examples.	[L2][CO5]	[02M]
	d List out various advantages of isoparametric formulation.	[L2][CO5]	[02M]
	e Define Axi-symmetric elements.	[L2][CO6]	[02M]
2	Derive the expression for Iso -parametric formulation for CST elements.	[L2][CO5]	[10M]
3	Derive the shape function for 4-noded Iso -parametric quadrilateral element.	[L2][CO5]	[10M]
	Derive the shape function for 8-noded Iso -parametric quadrilateral element.	[L2][CO5]	[10M]
5	Derive strain displacement matrix and elementary stiffness matrix for 4-noded Iso-	[L2][CO5]	[10M]
6	Parametric Quadrilateral Elements Determine the cartesian co-ordinates of the point 'p' which has local coordinates	[L2][CO5]	[10M]
	ϵ =0.5 and η =0.6. The Global co-ordinates are (2,1) (8,3) (7,7) and (3,5). All		[10141]
	dimensions are in mm.		
7	Determine the shape function $N_1,N_2,\&N_3$ using isoparametric concept at the interior points P (3.85,4.8) for the triangular element. The Global co-ordinates are (1.5,3) (7,3.5) and (4,7). All dimensions are in mm.	[L2][CO5]	[10M]
8	Determine the Cartesian co-ordinates of the point 'p' which has local co-ordinates ϵ =0.6 and η =0.3. The Global co-ordinates are (2,4) (3,6) (8,12) and(4,8). All dimensions are in mm.	[L2][CO5]	[10M]
9	Determine the Jacobian matrix for 2-D element which has local co-ordinates ϵ =0 and η =0. The Global co-ordinates are (1,1) (5,2) (4,5) and(2,5). All dimensions are in mm.	[L2][CO5]	[10M]
10	Explain about formulation of 4-noded Iso-parametric Axi - Symmetric element.	[L2][CO6]	[10M]

Prepared by: Mr D. Sreekanth Asst. Prof

CE